
NASA Contractor Report

ICASE Report No. 93-34

191488

,/
/_-_/._ _

/C S 2O
Years of

Excellence

CANONICAL FORMS OF MULTIDIMENSIONAL STEADY

INVISCID FLOWS

Shlomo Ta'asan

(NASA-CR-191488) CANONICAL FORMS

OF MULTIDIMENSIONAL STEADY INVISCIO

FLOWS Final Report (ICASE) 15 p

\

N94-13722

Unclas

G3/64 0186126

LL

r

_U 5

L :

NASA Contract Nos. NAS I- 19480, NAS 1-18605

June 1993

Institute for Compute-_l: Applications in Science and Engineering

NASA Langley Rese_lrch Center

Hampton, Virginia 23681-0001

Operated by the Univ_ Space Research Association

National Aeronautics land

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001





Canonical Forms of Multidimensional Steady hwiscid Flows

Shlomo Ta'asan *

The Weizmann Institute of Science, Rehovot 76100, Israel
atld

Institute for Computer Applications in Science and Engineering

Abstract

Canonical forms and canonical variables for inviseid flow problems are derived. In these forms

the components of the system governed by different types of operators (elliptic and hyperbolic)

are separated. Both the incompressible and compressible cases are analyzed and their similarities
and differences are discussed. The canonical forms obtained are block upper triangular operator

form in which the elliptic and non-elliptic parts reside in different blocks. The full nonlinear

equations are treated without using any linearization process. This form enables a better analysis

of the equations as well as better numerical treatment. These forms are the analog of the

decomposition of the one dimensional Euler equations into characteristic directions and Riemann
invariants.
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1 Introduction

In the past decade a substantial effort has been invested in numerical solutions of the Euler equations

in one dimension. These were based on characteristic decomposition of the flow, i.e,. a decomposi-

tion into three subsystems each of which correspond to a simple propagation along an appropriate

line in space-time. Efficient discretization schemes were based on this representation. We refer to

[2] for extensive reference on the subject. This approach is usually extended to multidimensional

problems by splitting it into a sequence of one-dimensional problems.

The above approach is limited and does not capture the real structure of the solution for

multidimensional flow problems. Moreover, the analysis is usually based on the time-dependent

problem although the case of interest is the steady-state problem. Consequently, an important

feature of the system such as its mixed nature has not been given proper attention. This paper is

concerned with multidimensional steady-state inviscid flow problems.

An analysis which is analogous to the decomposition of the one dimensional Euler equations

into characteristic directions and the Riemann invariants, is presented for multidimensional steady-

state inviscid flow problems. This methodology can be applied to more general partial differential

equations, such as the steady state and time dependent viscous flow equations. This analysis of

the equations break up the full problem into its fundamental (irreducible) subproblems and also

describe the interaction between them. It leads to a better understanding of the equations and to

new type of schemes that better represent the physical behavior.

The analysis is presented for incompressible and compressible Euler equations both both in

two and three dimensions. It shows in a clear way the existence of quantities that propagate along

streamlines, and other quantities whose behavior is directionally unbiased for subsonic compressible

flows or incompressible flows. Supersonic flows, on the other hand, both in two and three dimensions

are hyperbolic with respect to the stream direction. A change of variables is introduced in order

to bring the system into its canonical form, and the resulting new variables are called canonical

variables. The canonical forms are block upper triangular form, where the diagonal blocks consists

of the basic components of the systems and off diagonal ones represent some interaction between

the different subsystems.

For two dimensional incompressible Euler equations the canonical variables are velocities and

total pressure p + q2/2 and in three dimensions they are velocities, total pressure and normalized

helicity, namely, (w. V)/(V. V). Canonical variables other than the velocities propagate along

streamlines and form the non-elliptic part of the system. The velocity components satisfy an elliptic

system with a forcing depending on the hyperbolic parts.

For the the two dimensional compressible Euler equations the canonical variables are velocities

and total enthalpy, and in three dimensions a normalized helicity, namely, (w • pV)/(pV • pV) is

the additional canonical variable. Quantities other than the velocities propagate along streamlines.

The velocities are governed by an elliptic system for subsonic regimes and by a hyperbolic system in

supersonic regimes. The structure of the canonical forms shows in a clear way the relation between

the full problems (incompressible and compressible Euler equations) and simplified models that

have been studied in the past, such as (div, curl) systems in two and three dimensions, and their

compressible versions. Canonical boundary conditions are discussed in this framework. These are

the analog of characteristic boundary conditions for one dimensional compressible flows.



2 On Canonical Forms for Systems of Partial Differential Equa-

tions

Differential equations of constant coefficient are reduced by the Fourier transform to algebraic

equations in terms of symbols which are in general matrix polynomials in several variables. Let

P(D) be a differential operator of the form

P(D)= _ a,_n '_ (2.1)

where D = (D1,...,Dd), a = (al,...,ad) and D _ = D_ _ ...D'_ a is the usual multi-index notation.

The aa are I × l real valued matrices. We want to study solutions to the problem

P(D)u(x) = f(x) x E _ (2.2)

B( D)u(x) = g(x) x E Of_ (2.3)

where f_ is a domain in Eta and B(D) is an appropriate boundary condition to be specified later.

Fourier analysis in full and half space are carried out in order to analyze the interior and bound-

ary properties of the solutions, respectively. The symbol associated with P(D) is the polynomial

#(x,i_)= _ a_(i_) _ (2.4)
I_,l<,,_

where _¢= (_1,..-, _d) and _ = _" ..._d and its use transforms the constant coefficient differential

equation into the algebraic equation

= (2.5)

For elliptic systems where the matrix polynomial satisfies

[det P(i_)[ > CI,_I="

extens!v 9 research has been done with regard to smoothness properties of the solution_,, including the
effect of boundary conditions. The case of hyperbolic systems of differential equations, i.e., when

the principal part of det/5(i_) has real roots for _ # 0, has been studied in the context of time

dependent problems.
For the applications discussed in this paper one is interested in analyzing steady-state problems

which are mixed elllptic-hyperbolic. Thatis, part of the system is governed by hyperbolic equations

(with respect to some direction in space) and the rest of the system by an elliptic subsystem, and
some interaction exists between the two subsystems.

The first step in the analysis of a mixed system is the identification of the different subsystems,

i.e., elliptic versus hyperbolic. Next comes the identification of the variables corresponding to
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differenttype of behaviors,followedby a reductionof the systemto block triangular form. The
diagonalblocksarethe basicbuildingblocksof the system.

Wediscusstwotypesof reductionto canonicalforms. In thefirst casethenewsetof variables
arelinearcombinationof theold ones,viaconstantmatrices.In theothercasealinearcombination
viapolynomialsis used.Thus,the newvariablesin the secondmethodinvolvelinearcombinations
of theold onesandtheir derivatives.

C-Reducibility
Assumethat thereexist invertiblematricesS,T, (independent of _) such that sP(_)T is of

block upper triangular form, i.e.,

Jr312 il lk
/522( ) :

Pkk( )

= h (2.8)

where the subsystems Pjj,j = 1,..., k are irreducible.

Taking the determinant of both sides, and assuming that det(5')det(T) = 1, we obtain

det/3(_¢) = det J511(_) det 1522(_)...det Dkk(_) (2.9)

The blocks on the diagonal, correspond therefore, to the primitive building blocks of the system,

and the off diagonal ones represent the interaction of the different basic blocks.

Definition 1 A matrix polynomial P(_) will be called C-reducible if there exist invertible matrices

S, T independent of _ such that A(_) = SP(_)T is of block triangular form.

We will refer to this form of the matrix polynomial as the canonical form. It induces a canonical

form for the differential operator via the Fourier transform.

Thus, we have the following theorem,
Theorem: A necessary condition for an I × I matrix polynomial P(i_) to be C-reducible to a block

triangular form is that its determinant admits a factorization into lower order polynomials.

We give some examples to illustrate some important points with respect to the canonical form.

Example I: The symbol associated with the Cauchy-Riemann equations is

i_1 i_2 ) (2.10)

Its determinant -_ - _] is irreducible, therefore, this matrix is not C-reducible.

The factorization of the determinant into polynomials of smaller degree does not guarantee that

the corresponding matrices are C-reducible.

Example II: The matrix



whosedeterminant

i(2 i(, 0

i_3 0 i_1

(2.11)

(i_1)(-_ + _ -4-_32) (2.12)

is a product of two lower order polynomials, is not C-reducible. This can be seen by observing that

the eigenvector corresponding to the eigenvalue i_1 depends on _.

. k

P-Reducibility

For numerical applications one may allow a more general transformation in reducing a system

to block triangular form as suggested by the following definition.

Definition 2: A mat,ix polynomial P(_) is said to be P-reducible if there exist invertible matrix

polynomials S(_), T-I(_) such that S(_)P(_) = A(()T-I(_), where A(() is a matrix polynomial of

block triangular form.

The matrix given in Example is Pireducible. This can l)e seen from the identity

0 i_2 i_3 i_2 i_l 0 = i 2 i_l 0 0 i_2 i_3

0 i_3 -i_2 i_3 0 i_l 0 i_l 0 i_3 -i_2

Thus, using

(2.13)

1 0 0 )
S(()=T-'(()= 0

0 i_a -i_2

we get a reduction to a block upper triangular form given by

(2.14)

i(, 1 0 )
A= 1({2 i_a 0 (2.15)

0 0 i_l

By using the operators corresponding to S, T for the differential problem one may end up with

other variables than the desired ones. This reduction is still important for analyzing the equation

but the original variables may need to be solved for as well. One can define an extended system in

which the canonical form is combined with the transformation of variable and get a block triangular
form as

T -1 -I) (2.16)0 A

n
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This form whichwecallthe extendedcanonicalformmaybe requiredonly whenthematrices
S,T -1 depend on _. In the other case the transformation from the canonical variables to the

original ones is done by an algebraic mapping. In the applications discussed in the next section the

extended canonical form will be found useful for three dimensional problem.

Assuming that S, T transform the matrix polynomial/_(_) into block triangular form, we obtain

a similar reduction for the differential equation, namely,

(SP(D)T)(T-'u) = Sf (2.17)

that is, in terms of a new set of variables T-lu we get

A(D)v = Sf

The boundary conditions B(D)u = g are transformed into

(2.18)

Bij(D)vj = (Qg)i i = 1,...,k (2.19)
i,j= l ,k

and we assume that for each j = 1,..., k the operator Pjj(D) with the boundary condition Bjj(D)

form a well posed problem.

The simplest set of boundary conditions are those for which the boundary operator in the

transformed variables is diagonal, and each corresponding subproblem is well posed. We refer to a

set of such boundary conditions as canonical.

All the arguments made above applies to linear constant coefficient problems. The variable

coefficient case and the nonlinear case may have triangular forms for the principal part only.

It should be mentioned that the use of S,T -1 which are not polynonfials can reduce P(_) to

upper triangular form. However, the elements of this form are not polynomials, therefore, do not

correspond to differential operators. While such a representation is still useful in analysis of well

posedness of the boundary value problem, it is not as useful in developing numerical methods for

the problem. The representations discussed in this paper involve transformations that correspond

to differential operators and can be used in numerical implementation of certain iterative techniques
that are based on these forms. These issues will be discussed in a separate paper.

3 Canonical Forms for Incompressible Flow

In the applications we present in this and the next section, although nonlinear, a full reduction to

triangular form is presented, without involving any linearization.

The steady state incompressible inviscid equations in nonconservative formulation Ill are given

by

divV = 0 (3.1)
(V. V)V + V; = 0

which can be written in operator form as



Q grad p = 0

where Q is a diagonal matrix0perator of dimension d x d whose :diagonal entries are the scalar

convection operator Q = V • V. = " _ -

AnalYzing the determinant of this system reveals its structure which is necessary for analyzing
possible boundary conditions and discretizatlon issues. Denoting the matrix operator above by

Lmc, and freezing the coefficients at some constant flow, V0, one obtains

det Linc(_) = -]_]2(V0" _) (3.3)

where, _ = (_1, ,_a),l_l 2 = + U...... d"

The determinant which is already factored into irreducible factors reveals important properties

of the system of the incompressible Euler equations. While the operator A is elliptic, the operator

Q is hyperbolic with respect to the stream direc6on. This system is therefore of a mixed type.
Some components of the system display hyperbolic behavior, while the rest show elliptic behavior.

The power d- 1 in the factorization of the determinant suggests that there are d- 1 quantities

that are governed by hyperbolic subsystems. This forms a subsystem of the full equation which is

weakly coupled to the rest.

We proceed by identifying the hyperbolic components of this system. Using the relation

and defining

(V. V)V = 1V(V.V) - V × curlV

12 q2 V V
P = p+-_q = .

one obtain Crocco's form of the equations of motion, namely,

(3.4)

(3.5)

div(V) = 0 (3.6)
-V x curlV + VP = 0

Let (el,e2,e3) be an orthonormal basis such that el is in the direction of V, and (el,e2, e3)

form a right hand system, i.e., el × e2 = e3, e2 × e3 = el,e3 × el = e2

Taking the inner product of the momentum equations with V and using V • (V × curlV) =

(V × V) • curlV = 0, we obtain

V.VP=O (3.7)

This equation implies that the total pressure is constant along streamlines. Thus, the total

pressure P is one of the canonical variables we are looking for, and it corresponds to a factor V- V

in the factorization of the system. For three dimensional flows there exists another quantity that

:t



is governed by a a hyperbolic operator. From physical insight, a quantity that exists in three-

dimensional and not in two dimensional flows may have to do with vorticity. The vorticity u_

defined by

= curlV (3.8)

will be shown to play an important role in the decomposition of the system.

It can be easily verified that the vorticity component in the direction of the velocity cannot be

determined from the momentuln equations. However, we can obtain the following

- ej • (V x w) + ej -VP = 0,

which gives

- (ej x V). u_ + ejVP = 0,

Using the definition of ej we get the following equations

j = 2,3 (3.9)

j=2,3 (3.10)

-q(e2.w) + e3-VP = 0 (3.11)
q(e3" co) + e2" VP = 0

which can be interpreted as equations that determine two components of the vorticity vector.

The other component of the vorticity is obtained from

div_o = 0 (3.12)

which is a compatibility condition (div curl=0). Decomposing w as

u_ =/3V +w ± (3.13)
w£'el =0

and substituting (3.13) in (3.12) and using the continuity equation one obtain an equation for j3,

namely,

V. Vfl + div_ ± = 0 (3.14)

Therefore, f_ is also governed by a hyperbolic equation. Note that while P is constant along

streamlines, fl admits a more complicated structure depending on the behavior of P in cross-stream

directions.

Summarizing, we get the following

divV = 0

curlV - co = 0

V. V/_ + div(w ±) = 0

_± = (e2" u_±)e2 + (e3"u_ ±)e3

-q(e2 •u_±) + e3" VP = 0

q(e3- w ±) + e2 • VP = 0

qel • VP = 0



which can be written in a matrix form as

div

- curl qel e2 e3

V.V dive2 dive3

0 -q 0

0 0 q

V

/3
_2

e3 • V

e2 • V w3
kPjv.v

=0 (3.16)

Observe that although the upper block of the system which consists of of four equations

(div, curl) is overdetermined, its solution is guaranteed by the presence of the fl equation, which
states that divw = 0. Another way of looking at it is to eliminate the divca = 0 equation and to

regard the (div, curl) system as an equation for both V and /3. In this way we obtain a 4 by 4

system for four unknown quantities. This fixes a well known difficulty of solving (div, curl) in three

space dimensions.

For two-dimensional flows/3 = 0 and the equations take a simpler form. If el, e2 lie in the plane

defined by the flow then u_± • e2 = 0. Thus, w can be represented by a scalar quantity which we

denote by _z. The canonical form of the two dimensional incompressible Euler equations reduces to

D, D_

Dy -D_
0 0

0 0

0 0

-i 0
1

-q _D0

0 Q

(3.17)

where

Do = vD_- uDy (3.18)

These representations of the incompressible inviscid equations reveal the structure of solutions.

That is, the total pressure P and the normalized helicity (with respect to velocity) evolve along

streamlines, and determine the vorticity vector field. The velocity components satisfy an elliptic

syst_em of a (div, curl) form:

In t!fis representation which we call the canonical form of the incompressible Euler equations the

elliptic part has been separated from the hyperbolic part. The variables (V,/3, P) will be referred

to as the canonical variables.

This form of the equations suggest a natural set of boundary conditions, which we refer to as

canonical boundary conditions for the corresponding systems. The appearance of the Laplacian

operator _ in the factorization of the determinant calls for one boundary condition at every bound-

ary point. The term Qd-1 implies that additional d- 1 boundary conditions are to be prescribed

at inflow points of the boundary. From the factorization it is natural to prescribe at inflow the

canonical variables P,/3, and the extra condition to be imposed at every point is V • n where n is

an outward normal. Note that for two-dimensional problems /3 = 0 and therefore one boundary

condition is omitted.

E
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4 Canonical Forms for Compressible Flows

The Euler equations in conservation form [1] in terms of the variables (V,p, H) are

div(pV) = 0

div(pV ® V + pI) = 0 (4.1)

div(pVH) = 0 = 0

The analysis of the equations is simplified if one moves to the non-conservative formulation,

where

pQ grad 0 = 0

0 0 pQ o

(4.2)

Q¢ = pdiv + 2a-_V.(V.V)

Qv = _Q (4.3)

QH = _IQ

Denoting the matrix operator above by Le, and freezing the coefficients at (Vo,p0, Ho), the

determinant of the symbol gives

det Le(_) = poa+2(Vo • _)d((Vo" _)2_ co21_12) (4.4)

where co is the speed of sound and can be evaluated using the relations (where subscripts are

omitted),

s = p/p' 

H = + ½q2 (4.,5)
__--_1c2 = tt-½q 2
c2 = 7P/P

The factor Vo • _ appearing n the determinant here is the same one as for the incompressible

equation, suggesting that there are d quantities that propagate along streamUnes. The rest of the

system is governed by a system equivalent to the well known full potential operator @2 _ c2A whose

character depends on the Mach nmnber M,

M 2 = q2/c2 (4.6)

leading to an elliptic equation for M < 1 and hyperbolic (in the stream direction) for M > 1. As

before we use Crocco's form of the equation for analysis purposes.

QcV = 0

-pV × co - pTVs + pVH =0

div(pVH) = O.

(4.7)



By subtractingH timesthe continuityequationfrom theenergyequationoneobtains

pV.VH = 0

Taking the scalar product of the momentum equation with V leads to

(4.8)

pV . V H - pTV . Vs = 0 (4.9)

Thus, two of the quantities that propagate along streamlines are the total enthaipy H and the

entropy s. As the determinant suggest there is one more quantity in three dimensional flow that

propagate along streamlines.

To find that quantity we follow a similar path as in the incompressible case by introducing the

vorticity and its decomposition as

w = curlV

=/_pV + co"L (4.10)
¢o'L . V = O

The equation for fl is obtained the same way as in the incompressible case, i.e., using div¢o = 0,

giving

pV. Vfl + divw "L = 0 (4.11)

The quantity u_"L satisfies

-pq(e2 •co "L) - pTe3. Vs + pe3. VH = 0 (4.12)
pq(e3 •w "L) - pTe2 • Vs + pe2 • VH = 0

in complete analogy with the incompressible case.

The continuity equation is simplified by subtracting from it appropriate multiples of the energy

and the entropy equations, given QcV = 0.

Summarizing we get

or in matrix form

QcV = 0
curlV - ¢o = 0

pV. Vfl + div(w ±) = 0

_.t _ (e2"_l')e2 -- (e3"_'L)e3----0

-pq(e2 •o_"L) - pTe3 • Vs + pe3" VH = 0

pq(e3"w "L) - pTe2 . Vs + pe2 "VH = 0

"pTV • Vs = 0

pV.VH =0

(4.13)

10



QC

-curl pqel e2 e3

pV.V dive2 dive3 0 0

0 -q 0 -pTe3.V pe3.V

0 0 q -pTez.V pe2.V

-pTV • V 0
V.V

The nature of the subsystem

V

3
W2

O33

8

_H

:0 (4.14)

QcV =0 (4.15)

curlV = w (4.16)

can be studied by taking the gradient of the first equation and subtracting from it the curl of the

second equation. Using the relation

V2V = grad divV - curl curlY OAT)

and

Op V.(V.VV) (4.18)
V. gradp - 0(q2/2 )

we get

V2V + grad( O(q2/2------_V.(V. VV)) = -curlo_ (4.19)

This equation is elliptic for subsonic flow and hyperbolic with respect to the stream direction for

supersonic flows.
In two dimensions fl = 0 and the canonical form of the Euler equation reduces to

where

D1 D2 I 0 0 0 )

-Dv,,,,D._, -1 0 0
e_ D3 10 0 -q -- _-'('_Z_ _D3

0 0 0 TpQ 0

0 0 0 0 pQ

u))v )

= )

s )
H

D1 = plc2((c 2 - u2)D. - uvDv)

D2 = plc2((c 2 - v2)Dy - uvD.)

Da = vDx - uDu

(4.20)

(4.21)

ll



From the canonical form one can easily see that a natural set of boundary conditions for the

steady state Euler equations is the following.

At subsonic points one condition have to be specified on account of the elliptic part. This is

the compressible analog of the (div, curl) system for the incompressible case. This condition can be

pV. n where n is the outward normal to the boundary. A compatibility condition has to hold, that

is, the integral of tlaat quantity around the boundary has to vanish, similar to the incompressible

case. At inflow boundary points d more conditions has to be specified and the natural choice is

(H, s, fl), as these quantities are carried into the domain by the convection operator Q. At outflow

boundary points no condition is required for the operators Q.

At supersonic points the system is purely hyperbolic and require at the inflow d + 2 conditions,

and no conditions at outflow. In that case it is natural to specify the quantities (V, H, s), rather

than using fl for one of them.

5 Conclusion

Canonical forms for inviscid flow problems have been derived. In these forms the different types

of subsystems have been separated using a set of new variables, namely, the canonical variables.

These forms are upper triangular operator forms in which the building blocks of the systems reside

on the diagonal and the interaction of the different type of subsystems is represented by the off

diagonal blocks. This decomposition of systems of partial differential equations allows a better

insight into the structure of solutions which is essential in constructing numerical solutions.

The forms described here suggest new iterative solutions of the inviscid equations, both in two
and three dimensions. These will be discussed elsewhere.

The different approximations used in fluid dynamics over the years are clearly seen in the canon-

ical form. Assuming the flow is of constant total pressure P one obtain a (div, curl) system, which

in two dimensions is nothing but the well known Cauchy-Riemann equations. The three dimen-

sional implementation of a (div, curl) system was not popular since the overdetermined system

needs to be discretized carefully. As the canonical form suggests, the introduction of fl into that

overdetermined system fixes the major numerical difficulties related to existence of solutions.

For the compressible case, by assuming that the total enthalpy H and entropy s are.constant,

one obtains a system which is equivalent to the full potential equation. This is the upper left block

in the canonical form.
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